Order
 
HOME
 
Alzheimers
 
Piracetam
 
Idebenone
 
 
 
 
 
 
 
 
 
 
 
 
 
 

































 

The effect of deprenyl treatment on directional and velocity control of arm movement in patients with early stages of Parkinson's disease.

Giladi N, Honigman S, Hocherman S

Department of Neurology, Tel-Aviv Medical Center, 
Sackler School of Medicine, Israel
Clin Neuropharmacol 1999 Jan-Feb;22(1):54-9

ABSTRACT
 
Visual motor control (VMC) of arm movements is disturbed in patients with Parkinson's disease. The effect of antiparkinsonian medications on VMC is unknown. To assess the effect of deprenyl, a monoamine oxidase type B inhibitor, on VMC in the early stages of parkinsonism. Fourteen recently diagnosed, unmedicated patients with primary degenerative parkinsonism, mean age 61.9 2.8 years, were assessed by a computerized VMC system for tracking and tracing on a sine wave, circle, and square. Score was given for total time of test performance, directional error, arm velocity, and number of interruptions in tracking. All patients performed the first VMC test at baseline, prior to any antiparkinsonian treatment. The second test was performed after a month of treatment with 2.5 mg/d of deprenyl, and the third test was done after an additional month of treatment with 10 mg/d of deprenyl. Results were compared with 15 healthy volunteers with a mean age of 63.1 1.2 years. Parkinsonian patients performed significantly poorer on the VMC when compared to controls. Tracing was more affected than tracking. Tracing total time was almost twice as long as for controls (p < .0005). Treatment with 2.5 mg/d and 10 mg/d of deprenyl improved performance significantly (p < .05 and p < .005, respectively). Velocity of arm movement was not affected by deprenyl treatment in either dose. Directional control (tracing), severely disturbed in the parkinsonian group, improved back to the performance of healthy controls after 10 mg/d of deprenyl. In recently diagnosed parkinsonian patients internally guided VMC tasks were disturbed more than externally guided ones. Deprenyl treatment selectively improved directional control of arm movement in a dose related manner.
| Home | Order |
  • Deprenyl  in the treatment of Alzheimer's disease
  • Deprenyl  MAO-B inhibitors in the treatment of Alzheimer's disease
  • Deprenyl  for Alzheimer's disease
  • Deprenyl  stimulates biosynthesis of cytokines interleukin-1 & 6
  • Deprenyl  and age-related decline of the striatal dopaminergic system
  • Deprenyl  improves memory in amnesic Alzheimer's patients
  • Deprenyl  treatment of behavioral symptoms of Alzheimer's disease
  • Deprenyl   increases life span in Parkinson's patients
  • Deprenyl   possible mechanisms of action in Parkinson's disease
  • Deprenyl   effect on arm movement in early Parkinson's
  • Deprenyl   effect on cognitive functions in early Parkinson's 
  • Deprenyl   possible mechanisms of action in Parkinson's
  • Deprenyl   depression in Parkinson's disease
  • Deprenyl   improves visuo-motor control in early Parkinsonism
  • Deprenyl   management of early Parkinson's disease
  • Deprenyl   delays the onset of disability in Parkinsonian patients
  • Deprenyl   and tocopherol antioxidative therapy of Parkinsonism
  • Deprenyl   treatment and death of nigral neurons in Parkinson's disease.
  • Deprenyl   rationale for deprenyl medication in Parkinson's disease
  • Deprenyl   and levodopa in Parkinson's disease
  • Deprenyl   is an MAO-B inhibitor
  • Deprenyl   facilitates neuronal growth without inhibiting monoamine oxidase
  • Deprenyl   pharmacology
  • Deprenyl   biochemical actions
  • Deprenyl   effect of MAO-B inhibitors on MPP+ toxicity
  • Deprenyl   the history of its development
  • Deprenyl   protects neurons against neurotoxins
  • Deprenyl   in neurodegenerative disorders
  • Deprenyl   enhances the release of dopamine
  • Deprenyl   plus L-phenylalanine in the treatment of depression
  • Deprenyl   in the treatment-resistant of older depressive patients
  • Deprenyl   effects in atypical depressives
  • Deprenyl   up-regulates superoxide dismutase and catalase
  • Deprenyl   immunostimulant
  • Deprenyl   pharmacology
  • Deprenyl   effect on rat longevity and sexual acitivity
  • Deprenyl   effects of experimental cocaine administration
  • Deprenyl   effects on longevity in animals
  • Deprenyl   effects on subjective ratings of cocaine-induced euphoria
  • Deprenyl   increases the life span in Fischer rats
  • Deprenyl   effects on short term memory in young and aged dogs
  • Deprenyl   the facilitation of dopaminergic activity in the aged brain
  • Deprenyl   fluoxetine (Prozac) and deprenyl
  • Deprenyl   improves cardiac sympathetic terminal function in heart failure
  • Deprenyl   effect on dopamine concentration in the striatum of a primate
  • Deprenyl   a review of the pharmacology
  • Deprenyl   restores IGF-1 levels to young levels
  • Deprenyl   prolongs life in elderly dogs
  • Deprenyl   past, present, and future
  • Deprenyl   relevance to humans
  • Deprenyl   responses of forebrain neurons to deprenyl
  • Deprenyl   protects neurons from glutamate toxicity
  • Deprenyl   nitric oxide production and dilation of cerebral blood vessels
  • Deprenyl   modulates the decline of the striatal dopaminergic system
  • Deprenyl   inhibits tumor growth in rats with mammary tumors
  • Deprenyl   a catecholaminergic activity enhancer in the brain
  • Deprenyl   releases coupling in the catecholaminergic neurons
  • Deprenyl   clinical potential in neurologic and psychiatric disorders
  • Deprenyl   protects human dopaminergic neuroblastoma cells
  • Deprenyl   nitric oxide production and dilation of cerebral blood vessels
  • Deprenyl   assessing the effects of deprenyl on longevity of animals
  • Deprenyl   effects on cocaine-induced euphoria
  • Deprenyl   effects on response to experimental cocaine administration  
  • Deprenyl   Are metabolites of deprenyl useful or harmful?
  • Deprenyl   is devoid of amphetamine-like effects
  • Deprenyl   treated rats lived beyond the known maximum lifespan
  • Deprenyl   stimulates biosynthesis of cytokines interleukin-1 & 6
  • Deprenyl   pharmacological basis of the beneficial effects
  • Deprenyl   modulates the decline of the dopamineric system